<u>Practice Worksheet</u>: Operations & Composition with Functions

Perform the indicated operation and simplify completely. Show all work to get credit.

 f(x) = 10x	g(x) = -5x	h(x) = 8	j(x) = -10
1] $(f + j)(x) =$		2] $(f - g)(x) =$	
3] $(g \cdot h)(x) =$		4] $\left(\frac{g}{j}\right)(x) =$	
5] $(n-g)(5) =$		$6] (f \cdot g)(-1) =$	
f(x) = 6x + 4	g(x) = 4 - 6x	h(x) = 2x	j(x) = -2
7] $(f + g)(x) =$		8] $(f - g)(x) =$	
9] $(f \cdot j)(x) =$		$10]\left(\frac{g}{i}\right)(x) =$	
		.,.	
11] $(h-g)\left(\frac{1}{2}\right) =$		$12](f \cdot g)\left(-\frac{1}{6}\right) =$	
$f(x) = x^2$	g(x) = 10x + 5	$h(x) = \sqrt{x}$	j(x) = 5
[13](f+g)(x) =		[14](f-g)(x) =	
$15](f \cdot j)(x) =$		$16]\left(\frac{g}{i}\right)(x) =$	
		- (j)	
[17](h+j)(49) =		$[18](f \cdot h)(4) =$	

$f(x) = x^2 - 15$		$\boldsymbol{g}(\boldsymbol{x}) = \sqrt{\boldsymbol{x}}$		
x	f(x)	x	g(x)	$[19](f \circ g)(36) =$
1	-14	1	1	
2	-11	4	2	20] $(g \circ g)(16) =$
3	-6	9	3	
4	1	16	4	21] $(g \circ f)(4) =$
5	10	25	5	
6	21	36	6	22] $(f \circ f)(4) =$
7	34	49	7	

Use the tables of ordered pairs to determine the value of each composite function.

Use the graph to determine the value of each composite function.

- 23] $(h \circ f)(3) =$ 24] $(f \circ g)(4) =$
- $25](f \circ f)(-4) =$
- 26] $(g \circ g)(1) =$
- 27] $(g \circ h)(0) =$

Use the functions to determine the value of each composite function algebraically.

$f(x) = 2x^2$	g(x) = 3x - 2	h(x) = 3 - 4x	$j(x) = \frac{6}{x}$
$28](f \circ g)(3) =$	29] $(h \circ j)(12) =$	$30](g \circ h)(x) =$	$31](h \circ g)(x) =$

32] Sally Salesperson sells shoes part time at Super Shoes in the South Street Mall. She earns a 2% commission on total sales over \$5,000, which is paid as a bonus at the end of the year. Let her total sales be represented by x. f(x) = x - 5000 and g(x) = 0.02x

Which composition of functions would calculate her bonus at the end of the year? $(f \circ g)(x)$ or $(g \circ f)(x)$? Explain your reasoning.

33] Sally sold \$9,172 in shoes this year. Use composition of functions to calculate her bonus. Show work.